
1.1 Haskell Programming Assignment Specification

*

Haskell Programming Assignment Specification

1.2... Tasks

Learning Abstract

*

This is the first assignment of Haskell. It used ghci to access the Haskell and load the Haskell code to use for solving
questions below.

1.3 Task 1 - Mindfully Mimicking the Demo

*

Task 1 - Mindfully Mimicking the Demo

1.4 Task 2 -

Numeric Function Definitions

*

Task 2 - Numeric Function Definitions

1.5 Function specifications

Function specifications

*

*

The given demo that you are to recreate

1.7 Task 3 - Puzzlers

*

Task 3 - Puzzlers

This task requires that you write 2 function definitions, and that you then demo them by creating a “proper” demo. For
this task, please add to your presentation document (1) a text containing the 2 function definitions, and (2) a text
containing the demo that you are asked to create. What is a proper demo with respect to this task? Run each of the 2

functions with the applications that I provide in my sample demo, and then, for each of the 2 functions, add 2 applications
of your own invention. Thus, a proper demo will have 4 applications for each of the 2 functions.

1.8 Function specifications

Function specifications

*

*

The given demo that you are to augment

1.10 Task 4 - Recursive

List Processors

*

Task 4 - Recursive List Processors

This task requires that you write 3 recursive function definitions, and that you then demo them by recreating a given
demo. For this task, please add to your presentation document (1) a text containing the 3 function definitions, and

(2) a text containing a recreation of the demo that I have provided

1.11 Function specifications

Function specifications

*

*

1.12 The given demo that you are to recreate

The given demo that you are to recreate

1.13

 Task 5 - List Comprehensions

*

Task 5 - List Comprehensions

This task requires that you write 2 function definitions by using list comprehensions, and that you then demo them by
creating a “proper” demo. For this task, please add to your presentation document (1) a text containing the 2 function
definitions, and (2) a text containing the demo that you are asked to create. What is a proper demo with respect to this
task? Run each of the 2 functions with the 2 applications that I provide in my sample demo, then add 2 applications of
your own invention for each of the functions. Thus, your demo will have 4 applications for each of the 2 functions.

1.14 Function specifications

Function specifications

*

1.15 The given

demo that you are to augment

*

The given demo that you are to augment

1.16 Task 6 -

Higher Order Functions

*

Task 6 - Higher Order Functions

This task requires that you write 4 function definitions that feature higher order programming, and that you then demo
them by creating a “proper” demo. For this task, please add to your presentation document (1) a text containing the 4
function definitions, and (2) a text containing the demo that you are expected to create. What is a proper demo with
respect to this task? Run each of the 4 functions with the applications that I provide in my sample demo, and then add 2
applications of your own invention. Thus, your proper demo will have 4 applications for each of the 4 functions.

1.17 Function specifications

Function specifications

*

1.18 The given demo that you are to augment

*

The given demo that you are to augment

1.19 Task 7 - An

Interesting Statistic: nPVI

*

Task 7 - An Interesting Statistic: nPVI

This tasks invites you to implement the “normalized pairwise variability index” (nPVI) by making good use of zip and

map. This statistic has been used extensively in the field of lingustics, and is also used to significant effect in the field of

music cognition. In case you find yourself with a bit of time, and the inclination to see an impressive application of nPVI,
you might like to spend some time with the following paper:

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1063.772&rep=rep1&type=pdf

What is the nPVI? As the name implies, it is a measure of the pairwise variability of terms in a sequence of numeric terms.
In mathematical notation, the nPVI is defined by the following expression:

Should that seem like a lot to unpack, no worries, the plan is for you to reconstruct the nPVI expression in Haskell by
writing a sequence of functions that are consistent with the obvious deconstruction of the expression, the last of which
actually computes the nPVI for a sequence of integral values.

Please be aware of the fact that, for this little exercise in Haskell programming, the type of a function will habitually be
expressed prior to function definition, and, moreover, the type for each function will be very narrowly construed.

1.20 Task 7a - Test data

Task 7a - Test data

*

1.21 Task

7b - The pairwiseValues function

*

Task 7b - The pairwiseValues function

>>> pairwiseValues a

function

*

Task 7c - The pairwiseDifferences function

1.23 Task 7d - The pairwiseSums function

*

Task 7d - The pairwiseSums function

*

Task 7e - The pairwiseHalves function

1.25 Task 7f - The pairwiseHalfSums function

*

Task 7f - The pairwiseHalfSums function

1.26 Task 7g - The pairwiseTermPairs

function

*

Task 7g - The pairwiseTermPairs function

*

Task 7h - The pairwiseTerms function

1.28 Task 7i - The nPVI function

*

Task 7i - The nPVI function

1.29Task 8 - Historic Code: The Dit Dah Code

*

Task 8 - Historic Code: The Dit Dah Code

This task does not require that you write function definitions. Rather, it asks you to read some code, display some
variable bindings, and write expressions to illuminate the behavior of a collection of functions.

Haskell programmers seem to enjoy playing with famous codes when showcasing the language. No matter that the
Caesar cipher is mostly thought of as a cognitive toy of some historical interest. It still appears as a programming example
in a number of texts devoted to learning to program in Haskell. The present task honors another historically significant
code, one that once served as a very useful technology, Morse code.

The idea is for you to download a file called ditdah.hs, study it, load it into a Haskell process, and perform the following

subtasks. By doing so, perhaps you will learn a little something more about Haskell programming.

Please incorporate your successfull interactions into just one complete demo, and include the demo in your presentation
document.

1.30 Subtask 8a

*

Subtask 8a

1.31 Subtask 8b

*

Subtask 8b

*

Subtask 8c

1.33 Subtask 8d

Subtask 8d

1.34 Due Date

*

Due Date

Please complete your work on this assignment, and post your work to your web work site, by sometime on Friday,
December 10, 2021.

